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Abstract
The process of implementing cryptographic protocols
to meet external standards is complex, time-consuming,
and requires effective communication between legislators,
cryptographers, and programmers. The implementation
of the Advanced Encryption Standard (AES) involves ref-
erencing multiple specifications, testing against given ex-
amples, and passing NIST approval. While established,
tested, and open-source cryptographic algorithm imple-
mentations are recommended, implementing new or ob-
scure algorithms face similar issues as rolling one’s own
crypto. This paper aims to investigate several research
questions related to the implementation of cryptographic
protocols, the structure of a correct AES implementation,
adapting the way legislators write law to an IR, ensuring
the integrity of our static web application, and assessing
the effectiveness of a well-designed IR skeleton. As a re-
sult of our research, we propose CIR 0.1, a prototype in-
termediate representation which empowers programmers
to express partial code skeletons with varying possible
levels of granularity. We showcase its syntax, as well as
demonstrate and evaluate potential intermediate represen-
tations in CIR for writeability, legibility, and accuracy. We
find CIR to be more flexible than shipping an implementa-
tion with a protocol, but neither general enough for appli-
cation to any protocol, nor qualitatively excellent enough
to contend against existing solutions and the status quo.

1 Introduction
Implementing cryptographic protocols to the specification
and the satisfaction of an external review board is a time-
consuming, difficult, and laborious process, at best involv-
ing communication and comprehension between the leg-
islators who draft the requirements and the programmers
who must implement them, and at worst no communica-
tion whatsoever beyond the actual approval process.

Consider the Advanced Encryption Standard (AES), a
widely-used block cipher algorithm approved by the U.S.
Government. Implementations of this algorithm wishing

to conform to these standards must reference myriad spec-
ifications on the algorithm, test against given examples
(See: [4] Appendix F), and pass NIST approval to pass
as secure in government-regulated applications. Bridg-
ing the gap between programmers and legislators will not
only ease the difficulty in communication, approval, and
development surrounding implementation and codifica-
tion of cryptographic protocols; the wider this gap, the
more stunted progress and adoption in cryptography may
be.

The breach which stands between lawmakers, cryptog-
raphers, and programmers is significant; each has their
own unique specialties, yet depends fully on the expertise
of each other. The AES selection process was a lengthy
process from 1997 to 2001, requesting algorithm submis-
sions from the general public, narrowing the selection
from 15 to 5 algorithms, and finally selecting Rijndael’s
algorithm [13]. This selection process ultimately gener-
ated hundreds of pages of documentation spread across
various sources, all available exclusively in English prose
and mathematical notation (e.g., [11], [12]).

The initiated, security-oriented programmers knows
well, “Don’t Roll Your Own Crypto,” and for good rea-
son. Even seasoned cryptographers make mistakes; see
the WEP algorithm contemporaneous to the AES se-
lection process. In light of this, the safest and most
popular approach to crypto is to use established, tested,
often open-source cryptographic algorithm implementa-
tions. For AES, an algorithm widely adopted and tested,
both in practice and in theory, there are no shortage of
solutions available for most computational needs: C im-
plementations exist in both lightweight (tinyAES [6]) and
established (libgcrypt [5] and OpenSSL [1]) capacities.

There are two main issues with this accepted practice.
First, the work of implementing these algorithms in prac-
tice falls to the work of third parties not necessarily di-
rectly involved in the creation and approval of such algo-
rithms as AES, necessitating someone to initiate the pro-
cess of reviewing existing documentation, organized and
disseminated sporadically as mentioned. While not quite
equivalent to rolling one’s own crypto, as the difficult the-
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ory is worked out beforehand, there is still much that can
go wrong, and even more at stake; it is vital that the in-
formation constructed in the standard be as readable and
approachable as possible without sacrificing clarity and
security.

The second issue is that this presumes the availability
and feasibility of such solutions. Thankfully, with AES, C
solutions are available, translating directly to many com-
putational machines due to the universality of C; thanks
also to the nature of AES’s design to be accessible across
many devices with varying capacities [13]. There are
many cases, though, where there will not always be an
available, feasible solution; consider trivially cases where
proprietary software harden themselves to third-party in-
jection attacks by rejecting third-party code altogether.
More topically, in the age of post-quantum cryptography
[14], as we are preparing to engage in determination pro-
cesses not unlike those in 1997 to select the final AES
algorithm, there will initially not be available such open-
source solutions, and naturally none of them well have
any longevity at the release of the algorithm.

Implementing any new or relatively obscure crypto-
graphic algorithm will face the same issues programmers
face when rolling their own crypto: Someone must first
venture to implement the cryptographic algorithm. Test-
ing, breaking and fixing are inevitable; indeed, such is
vital to maintaining security.

We have the following research questions we investi-
gate through the course of this paper.
RQ1: What is the essential structure of a correct AES
implementation?
RQ2: How can the way legislators write law be adapted
to an IR?
RQ3: How do we ensure the integrity of a static web ap-
plication?
RQ4: How effective is the skeleton an adequately de-
signed IR provides?

The remainder of this paper proceeds as follows. Sec-
tion 2 overviews our paper. Section 3 describes the design
of CIR 0.1. Section 4 evaluates our solution. Section 5
discusses additional topics. Section 6 describes related
work. Section 7 concludes.

2 Overview
While there are many parts of the entire cryptographic al-
gorithm lifecycle subject to improvement, we will focus
on bridging the gap between those who are responsible for
legislatively codifying the algorithm, and those who are to
implement it, by leveraging the well-established concept
of architecture design and unit testing from the software
engineering world, and applying it at the legislative level.

We identify three principal agents: Cryptographers,

Figure 1: Usage flow of our approach, showcasing our
architecture at a high level. Left: The implementation and
adoption lifecycle. Right: The designed architecture.

legislators, and implementers. As with the AES selec-
tion process, we anticipate cryptographers and legislators
to work closely together. This close cooperation will pro-
duce an intermediate representation (IR) that codifies cer-
tain aspects of the protocol programatically. The imple-
menters (those tasked with implementing the protocol)
then take this IR and apply our compiler to it. We call this
specific IR compiler CIR (Cryptographic Intermediate
Representation)1.

Furthermore, we restricted our targets to specifically
the AES algorithm, although in practice this IR should
be able to adapted to a variety of circumstances and al-
gorithms. We also restricted our output to specifically C
skeleton codes, although the same principles could be ap-
plied to generating other artifacts and for other languages.

The compiler works by adapting the textual represen-
tation of the IR, which bears a similar resemblance to
Python through the dynamic whitespace emblematic of
the language, and producing various artifacts. For the
scope of this paper, we examined the production of code
skeletons from this IR.

3 Design

3.1 CIR 0.1
CIR 0.1 is a high-level, human-interpretable intermediate
representation which allows the user to specify, with as
much or as little granularity as they desire, a language-
agnostic description of a protocol or algorithm.

3.1.1 Definitions

A CIR program consists of a series of lines which corre-
spond directly to a series of tree structures.

1Alternatively, named after Ciriatto, a demon from Dante’s Inferno.
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3.1.2 Tokenization

We define the following token structures identifiable in a
CIR program:

1. Keywords are fully-uppercased strings of letter cor-
responding to one of the following: CHOOSE,
DEFAULT, DEFINE, ELSE, ELSEIF (acceptable
variants: ELSIF, ELIF), FOR, IF, METHOD,
MUTABLE, PASS, REPEAT, RETURN, SETMODE,
STRUCTURE, TIMES, and TO.

2. Comments begin with // and extend to the end of
the line.2

3. Spaces are consecutive strings of spaces (0x20)
and/or tabs (0x09).

4. Each colon (:) gets its own token.

5. Return type indicators are defined as the two-
character string ->, or the unicode character →.

6. Words are defined as any alphabetic character or un-
derscore, followed by 0 or more alphanumeric char-
acters and/or underscores.

7. Numbers are defined as 1 or more digits (0 to 9) in
sequence.

8. Linebreaks are any sequence of linefeeds (0x0A)
and/or carriage returns (0x0D).

9. Operators are defined to be any of the following: -,
+, *, /, !, ˜, ˆ, |, &, <, <=, >, >=, or, and, or is.

10. Each of the parentheses (( and )), the comma (,),
and the equals sign (=) get their own token.

We tokenize by greedily scanning the input string in the
above order for the equivalent regular expressions (e.g.,
[A-Za-z_][A-Za-z0-9_]* to match words). We
statically assert spaces and tabs cannot both exist in the
same spaces string, as well as error on any character not
described above. Tokenization yields a list of Tokens,
each of which has a type (corresponding exactly to one
of the above categories) and a raw string (corresponding
to its lexical value).

3.1.3 Semantic Parsing: Trees

We identify the following tree structures in CIR programs:

2Comments beginning with /// are reserved for fall-through com-
ments (which are additionally represented in the generated output), al-
though this is not currently enabled due to the not-necessarily-linear na-
ture of compilation.

1. Both declarations and method evaluations consist of
a word, followed by an open parenthesis, occurring
at the base level of code. We then infer what is meant
depending on the word prefixing the parenthesis: If
it is a Type word (i.e., Int, Byte, or Array), we
infer a declaration, else a method evaluation. In ei-
ther case, the structure is finished by reading tokens
until a close parenthesis.

2. Assignments consist of a word followed by an equals
sign, and are terminated by a line break.

3. Structure and method definitions are both deter-
mined by the presence of the corresponding keyword
(STRUCTURE or METHOD), followed by a word (the
name of the definition), and an option list of param-
eters, terminated by a colon; then, the definition ex-
pects a list of indented statements.

4. If, elseif, else, and while structures are the corre-
sponding keyword (IF, ELSEIF, ELSE, or WHILE),
followed by a condition demarcated by a colon.

5. Define and default statements function similar to
#define in C, but follow the syntax of an as-
signment: They are the corresponding keyword
(DEFINE or DEFAULT), followed by a word fol-
lowed by an equals sign followed by the value. Un-
like in C, however, these are defined more like enu-
merators.

We greedily scan for the appropriate patterns from left
to right in the tokenized code. Each statement is either
a leaf or a tree. Each has a head value and a type value
identifying which kind of structure it represents. Trees
have 1 or more children. (By implementation, leafs and
trees are both nodes with 0 children and 1 or more chil-
dren, respectively.)

3.1.4 Skeletonization

This step operates on the list of trees produced by the
above step. Each tree corresponds to a block of skeleton
code in the output.

3.1.5 Syntax

Modes. SETMODE denotes the existence of a constant, in
the following example, named Mode, which can take on
one of the values of Rad, Cool, or Square. We can specify
its default value using DEFAULT, or explicitly set its value
with DEFINE.

SETMODE Mode(Rad, Cool, Square)
DEFAULT Mode = Cool
DEFINE Mode = Cool
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Variables. A type followed by one or more variables
declares those variables of that type. By default, variables
are immutable. Mutable variables are explicitly tagged
with the MUTABLE keyword. You can also create ad-
vanced variable types with STRUCTURE.

Int(IterationCount)
MUTABLE Int(Counter)
STRUCTURE Name:

Array(Bytes, 256)
Name(MyName)

Methods. The METHOD keyword denotes a method,
which has an optional parameter list (assumed void if
omitted) and an optional return type (assumed void if
omitted).

METHOD Foo:
PASS

METHOD Bar -> Int:
RETURN 621

METHOD Multiply(Int x, Int y) -> Int:
RETURN x * y

Iteration. Iteration is accomplished via either WHILE
or REPEAT...TIMES.

MUTABLE Int(other)
other = 15
WHILE other > 10:

other = other - 2
REPEAT other * 2 TIMES:

PASS

Branching. Branching is accomplished with IF,
ELSEIF, and ELSE.

IF other is 0:
PASS

ELSEIF other > 5:
IF other > 10:

PASS
ELSE:

PASS

3.2 Essential design of AES
To answer RQ1, we surveyed the three AES implementa-
tions mentioned earlier ([1], [6], and [5]), as well as the
existing AES documentation ([11], [12]). This design is
reflected in our designed IR in Section 4.

3.3 Web application integrity
The service is served statically through GitHub Pages. It
is susceptible to the same kinds of attacks most client in-
terfaces are, such as man-in-the-middle attacks. Being a
static web application, however, means it could be ported
to an offline client application (e.g. by serving it as an

Electron application, or even just downloading the web-
page), which can be useful in an environment which needs
a secure information flow. We are less susceptible to de-
nial of service attacks, as there is no server-side activity
besides serving a webpage, which is cached; furthermore,
GitHub Pages is equipped to handle large server loads al-
ready. Thus, we deem the application fairly secure, at
least as secure as existing security options for vending ap-
plications, thereby answering RQ3.

4 Evaluation

4.1 Case studies

Given’s CIR structure, we can implement an IR for the
AES protocol in varying degrees of granularity.

4.1.1 Least granularity

Int(KeySize, RoundCount)

SETMODE Mode(Mode128, Mode192, Mode256)
DEFAULT Mode = Mode128
CHOOSE Mode:

OPTION Mode128:
KeySize = 128
RoundCount = 10

OPTION Mode192:
KeySize = 192
RoundCount = 12

OPTION Mode256:
KeySize = 256
RoundCount = 14

Int(RowCount, ColumCount)
RowCount = 4
ColumCount = 4
STRUCTURE State:

Array(Byte, RowCount, ColumCount)

STRUCTURE RoundKey:
TODO

METHOD Encrypt:
TODO

METHOD KeyExpansion:
TODO

METHOD SubBytes:
TODO

METHOD ShiftRows(State state):
TODO

METHOD MixColumns(State state):
TODO

METHOD AddRoundKey:
TODO

This provides the following C structure:
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#include <stdint.h>
#define true (1)
#define false (0)

/** Mode: Mode_Mode128 | Mode_Mode192 |
Mode_Mode256 **/

#if !defined(Mode_Mode128) && !defined(
Mode_Mode192) && !defined(Mode_Mode256
)

#define Mode_Mode128
#endif
void Encrypt(void);
void KeyExpansion(void);
void SubBytes(void);
void ShiftRows(State state);
void MixColumns(State state);
void AddRoundKey(void);

int KeySize, RoundCount;
#ifdef Mode_Mode128

#define KeySize ((int) 128)
#define RoundCount ((int) 10)

#endif
#ifdef Mode_Mode192

#define KeySize ((int) 192)
#define RoundCount ((int) 12)

#endif
#ifdef Mode_Mode256

#define KeySize ((int) 256)
#define RoundCount ((int) 14)

#endif
int RowCount, ColumCount;
#define RowCount ((int) 4)
#define ColumCount ((int) 4)
typedef uint8_t State[RowCount][ColumCount

];
typedef /* TODO: FILL */ RoundKey;
void Encrypt (void) {

//TODO:
}
void KeyExpansion (void) {

//TODO:
}
void SubBytes (void) {

//TODO:
}
void ShiftRows (State state) {

//TODO:
}
void MixColumns (State state) {

//TODO:
}
void AddRoundKey (void) {

//TODO:
}

4.1.2 Increased granularity

Similar to above, but we instead implement
METHOD Encrypt as:

METHOD Encrypt:
MUTABLE State(state)
KeyExpansion()
// initial round key addition
AddRoundKey()
// interior rounds
REPEAT RoundCount - 1 TIMES:

SubBytes()
ShiftRows(state)
MixColumns()
AddRoundKey()

// final round
SubBytes()
ShiftRows()
AddRoundKey()

which produces the following C skeleton (snippet):

void Encrypt (void) {
State state;
KeyExpansion();
AddRoundKey();
for(int _temp_0 = 0; _temp_0 <

RoundCount - 1; _temp_0++) {
SubBytes();
ShiftRows(state);
MixColumns();
AddRoundKey();

}
SubBytes();
ShiftRows();
AddRoundKey();

}

4.2 Results
The design of the IR itself is potentially too program-
matic in style, and not flexible enough to be intuitive to
the layperson. Although it was modeled after Python,
and we hope that the analytic mind of a legislator might
parse such a structure easier than a layperson, it is still
unashamedly a programming language’s syntax. That be-
ing said, it is much more approachable than writing pure
C code. With increased granularity, however, the current
design of CIR more closely approaches C code, both in
expression and syntax.

Our results show that CIR, while capable of expressing
certain levels of granularity for algorithms, is currently
neither general enough to express all kinds of algorithms
and data structures, nor is it natural enough to be friendly
enough for a non-programmer. Thus, to answer RQ4, we
claim CIR is somewhat effective, although leaves a lot to
be desired, and is far from market-viable.
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5 Discussion
There are many holes left by assumptions throughout this
project. IR input parsing and correction, which is vital
to any language, is currently heavily under supported and
under reported. Although the language does have a lot
of syntax-level and some semantic-level error checking,
there is still much that could be added, such as enforcing
correct if/else/else-if structure. The writer of the IR is as-
sumed to be, not only a programmer, but one well-versed
with the quirks and oddities of CIR, which currently lacks
documentation beyond the source code and that informa-
tion outlined in this paper. This falls short of the goal of
letting legislators write this code who are not versed in
programming. However, it does meet the goal of being
legislator legible, reading very nearly like pseudocode.

6 Related Work
The Catala programming language [9] attempts a similar
task, albeit on the contract level, and is intended for in-
tralegislative communication.

Source code summarization is a common adjacent task
to source code skeleton generalization [8] [10] [2] [7], al-
though such attempts are for intraprogrammatic commu-
nication.

In general, there seems to be very little research in this
exact area, namely, the intersection between legislative
and programmatic communication.

7 Conclusion
Often, a solution attempting at unifying people, unless
universally adopted on the spot, merely creates a new
standard which competes with the others, thereby con-
tributing to the disunity.3

The idea behind CIR is to help legislators, cryptogra-
phers, and implementers communicate. Although it en-
joys some theoretical success to this end, the language
is useless—even harmful—if not adopted. Therefore, the
concept must be iterated upon much more before even at-
tempting to market it.

Therefore, instead of introducing a new standard, it
might be best to revise the current practice. We should
reflect: Why is there such a gap between legislation and
implementation? Perhaps because the legislation needs to
be correct, specific, and set in stone, whereas implemen-
tations need to be dynamic and change with the times and
use cases to remain secure. The legislation is an ideal, of
which the implementation is sometimes only a partial re-
alization. Could an implementation be shipped with leg-

3As eloquently expressed in https://xkcd.com/927/.

islation? Could we see a government-endorsed or even
mandated implementation? If mandated, it would have to
be general enough for virtually any purpose, even those
not yet existent. Even if a merely endorsed implementa-
tion exists (e.g., physically through microchips, or digi-
tally through software), the niche that CIR attempted to
fill could still exist, especially depending on the nature of
the government solution; such involvement on the govern-
ment’s end on programming implementations might even
be overbearing and unhelpful.

If we were, however, to pursue the new standard route,
there are a few avenues available that might provide a
more fruitful standard. First, one might consider allow-
ing for goals and tasks to be expressed, not imperatively,
but functionally. Integrating concepts about what the pro-
gram SHOULD and SHOULD NOT do (in the style of
RFC 2119 [3]), might be useful in some cases.

To allow for more natural language inputs, one might
consider the use of large language models to interpret hu-
man speech. However, for such a sensitive area as secu-
rity, much progress into making models deterministic and
reliable would need to be made, most likely culminating
in a specific large language model suited to this end.
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