
Research Artifact: Color Schemes

Conor O’Brien

November 7, 2023

Contents

1 Introduction 1

2 Color Schemes 1
2.1 Continuous color schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1.1 Achromatopsia Linear Diverging Colormaps . . . . . . . . . . . . . . . . . . . 2
2.1.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Categorical color schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Discussion 8

4 Conclusion 9

1 Introduction

As developers on the CSCI 435 Project 4 Astxplainer Visualization team, we need to research
potential color schemes for use in our project.

2 Color Schemes

We have 4 primary potential use cases for color schemes:

1. Node probabilities (0.00 to 1.00) are continuous.

2. Node types (e.g. at least leaf node vs tree with children) are categorical.

3. Node focus (default, hover, and highlighted) is categorical.

4. Overall color scheme (light vs dark) is categorical, but determined.

Our color schemes should be readable and accessible (e.g. colorblind safe, grayscale friendly).

2.1 Continuous color schemes

Pelacio et al. give an unclassed diverging quantitative color scale (featured pp. 5-6, 8) for coloring
node probabilities [6]. This scale roughly goes from dark red (0.0), to light red (0.25), to white
(0.5), to light blue (0.75), to dark blue (1.0), and appears to correspond with the RdBu diverging
colormap Matplotlib provides [2].
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Figure 1: Coblis tests on RdBu colormap, with reversed scale arrayed above
scale for ease of comparing distinctness.

Figure 2: An achromatopsia vision view of the diverging colormaps Matplotlib
provides.

Under the Coblis colorblindness tests [1], RdBu is distinguishable at all presented simulated vi-
sual perceptions besides achromatopsia (Figure 1). Practically, this means while the color spectrum
is mostly accessible, it becomes inaccessible in achromatic environments, such as achromatopsia af-
fected individuals, as well as grayscale printings. This makes it suboptimal for our purposes, and
a major interest of our research.

This is primarily due to the two primary divergent tones having indistinguishable saturations.
This can be fixed by two approaches: Either using a sequential color scale, or varying saturation
continuously throughout the scale. While there are a plethora of accessible sequential color scales
available already, there are no popular diverging colormaps shipped with Matplotlib that are ac-
cessible to achromatopsia vision (Figure 2). We therefore shall consider a novel class of colormaps
which seeks to address these issues.

2.1.1 Achromatopsia Linear Diverging Colormaps

To investigate our second option more thoroughly, we devise diverging colormaps which, under an
achromatopsia vision view, transform to linear colormaps.

The nature of a diverging colormap is to have two defined extrema with some more muted
middleground to differentiate them [5]. Naturally, this is not possible in grayscale. Although a
classical diverging colormap cannot be mapped directly to grayscale, a sequential grayscale colormap
can still communicate the same information.

For the purposes of this investigation, we approximate achromatopsia using Coblis’s mapping
function over RGB colorspace (ranging 0.0 to 1.0) [3]:

e = A(r, g, b) = 0.299r + 0.587g + 0.114b

(r′, g′, b′) = (e, e, e)
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Figure 3: A full intensity blue and a dark, near-black green map to the same
perceived color (e = 0.114) under simulated achromatopsia vision.

We wish to investigate satisfying both the characteristics of a full-spectrum diverging colormap
and an achromatopsia sequential colormap simultaneously. Thus, we wish to pick appropriate colors
for our diverging colormap for whom the e values increase consistently. For example, for a 3 color
diverging colormap, we will have three colors C1, C2, and C3 for which the corresponding e1, e2,
and e3 with some positive constant ∆ such that en+1 = en +∆.

Note that the color that contributes the least in achromatopsia vision is blue. In that context, a
bright blue is comparable to a dark green (Figure 3). This makes shades of blue ideal for our lower
extremum. Likewise, as green contributes the most, we get a bright color in both full-spectrum
and anchromatopsia vision.

In general, there is an entire plane of solutions which map to a specific e-value. We are interested
especially in a full-spectrum vision bright color in the center with e ≈ 0.5. Additionally, we are
interested in equally dark, differing full-spectrum vision colors on the extrema with low and high e
values respectively.

To begin, let us arbitrarily choose ek = (0.114, 0.5, 0.886) with ∆ = 0.386, which lets us choose
C1 = (0, 0, 1.0). (We do not want to choose much lower e1 or much higher e3, since we want to
use colors, rather than eccentric shades of black or white.) For our first attempt, let us mirror
Matplotlib’s RdBu, and arbitrarily choose C3 as some shade of red. Since our target e3 = 0.886,
and we want a shade of red (i.e. r ≫ g = b), we have to solve

0.886 = A(r, g, g) = 0.299r + 0.587g + 0.114g

= 0.299r + 0.701g

0.701g = 0.886− 0.299r

g =
0.886− 0.299r

0.701
= 1.26391− 0.426534r

Maximizing r = 1 gives g = b = 0.837375, which is a bright, pale peach (#ffd5d5). We
may also employ linear programming to generate other candidates. Minimizing r + g + b with
A(r, g, b) = 0.886 gives (r, g, b) = (1, 1, 0), which is bright yellow. Instead minimizing relative
luminance (L = 0.2126r + 0.7152g + 0.0722b) gives (r, g, b) = (1, 0.8058, 1), a shade of pink. An
example minimizing luminance but instead targeting e3 = 0.7 for a de facto darker shade, also with
the additional constraint g = b, gives (r, g, b) = (1, 0.572, 0.572); this is included for illustration
purposes in Figure 4.
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Figure 4: Bicolor colormap schemes targeting ek = (0.114, 0.886). From top
to bottom: Ach-Blue-Peach, Ach-Blue-Pink, Ach-Blue-Yellow, and Ach-Blue-
Salmon.

Any linear RGB interpolation between two colors also interpolates the corresponding e values.
Let I(C1, C2, p) be color which lies at proportion p between the linearly interpolated colors C1 and
C2; representing each color as a vector, we have I(C1, C2, p) = C1 + p(C2 −C1), A(C) = W ·C for
W = [0.299, 0.587, 0.114], and

A(I(C1, C2, p)) = W · (C1 + p(C2 − C1))

= W · C1 +W · p(C2 − C1)

= W · C1 + pW · C2 − pW · C1

= A(C1) + pA(C2)− pA(C1)

= A(C1) + p(A(C2)−A(C1))

= I(A(C1), A(C2), p).

Thus, any choice of RGB colors will always smoothly interpolate under our simulated achromatopsia
vision, and any smooth RGB interpolation is also smooth under achromatopsia vision.

While these appear to be adequate bicolor colormap schemes, looking ahead to introducing
the center color C2, results are not promising. We need to now target midpoints e2 using similar
approaches to before. Supposing we now want a maximal green, g = 1 is actually too large, so our
previous analytical method fails here; with a slight adjustment, simple algebra reveals 0.587g =
0.5 ⇐⇒ g = 0.852. Minimizing r + g + b targeting e2 = 0.5 via linear programming, agnostic to
our desire of green, however, gives the same solution: (r, g, b) = (0, 0.852, 0), an acceptable forest
green. Instead minimizing luminance as before, we get (r, g, b) = (1, 0.148, 1), a strong magenta.
Instead targeting e2 = 0.407 to compensate for the lower e3 = 0.7 value we used illustratively, we
get (r, g, b) = (0, 0.693, 0) when minimizing r + g + b, a slightly darker forest green, and (r, g, b) =
(0.980, 0, 1) when minimizing luminance, an even stronger magenta.

Holding fixed C1 and ek, we have our choice between three right endpoint colors (peach, pink,
yellow) and two midpoint colors (green and magenta); with our compromise on e3 = 0.7, we
investigated one choice of endpoint color (salmon) and two choices of midpoint color (darker shades
of green and magenta); all for a total of 8 possible combinations under consideration. The results
of this colormap investigation are contained in Table 1 and Figure 5.
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Colormap name C2 C3 e2 e3
A-BGP: Ach-Blue-Green-Peach (0.000, 0.852, 0.000) (1.000, 0.837, 0.837) 0.500 0.886
A-BMP: Ach-Blue-Magenta-Peach (1.000, 0.148, 1.000) (1.000, 0.837, 0.837) 0.500 0.886
A-BGK: Ach-Blue-Green-Pink (0.000, 0.852, 0.000) (1.000, 0.806, 1.000) 0.500 0.886
A-BMK: Ach-Blue-Magenta-Pink (1.000, 0.148, 1.000) (1.000, 0.806, 1.000) 0.500 0.886
A-BGY: Ach-Blue-Green-Yellow (0.000, 0.852, 0.000) (1.000, 1.000, 0.000) 0.500 0.886
A-BMY: Ach-Blue-Magenta-Yellow (1.000, 0.148, 1.000) (1.000, 1.000, 0.000) 0.500 0.886
A-BGS: Ach-Blue-Green-Salmon (0.000, 0.693, 0.000) (1.000, 0.572, 0.572) 0.407 0.700
A-BMS: Ach-Blue-Magenta-Salmon (0.980, 0.000, 1.000) (1.000, 0.572, 0.572) 0.407 0.700

Table 1: Textual description of achromatopsia linear diverging colormaps for
C1 = (0, 0, 1) and e1 = 0.114.

Figure 5: Coblis tests on our achromatopsia linear diverging colormaps for
C1 = (0, 0, 1) and e1 = 0.114. Numbered: (1) Ach-Blue-Green-Peach, (2) Ach-
Blue-Green-Pink, (3) Ach-Blue-Green-Yellow, (4) Ach-Blue-Green-Salmon, (5)
Ach-Blue-Magenta-Peach, (6) Ach-Blue-Magenta-Pink, (7) Ach-Blue-Magenta-
Yellow, and (8) Ach-Blue-Magenta-Salmon.
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Figure 6: Tested colormaps visualizing z = sinx cos y over x ∈ [−2, 2], y ∈
[−1, 3], and z ∈ [−1, 1] given to participants.

2.1.2 Evaluation

Of the 8 candidate colormaps, we arbitrarily select 4: Ach-Blue-Green-Yellow, Ach-Blue-Magenta-
Yellow, Ach-Blue-Green-Salmon, and Ach-Blue-Magenta-Salmon. We judged these to have the
widest breadth of range across all 9 simulated vision spectra. To further evaluate these achro-
matopsia linear diverging colormaps, we distributed a survey online asking recipients to rank these
4 colormaps, as well as 3 control colormaps from Matplotlib: binary, RdBu, and coolwarm. The
survey was open for 24 hours, from November 5th, 2023 to November 6th, 2023, and reached 60
participants with a response rate of 93.33% (N = 56).

The main bulk of the survey itself consisted of 7 questions asking participants to rate the 7
aforementioned colormaps on a discrete linear scale from 1 (“Awful”) to 10 (“Perfect”). Each
colormap was projected on the same graph Figure 6. After that, we collected one mandatory
demographic datum, whether or not the respondent was colorblind or colordeficient, and if so, in
what way; we also collected three optional demographic data: Age band (18 to 24, 25 to 44, 45
to 64, and 65 or older), self-described technology proficiency (linear discrete scale from 1 (“Not
proficient”) to 5 (“Proficient”)), self-described familiarity with data visualization (linear discrete
scale from 1 (“Not very familiar”) to 5 (“Very familiar”)), and gender (1 or more from Male, Female,
Non-binary, Transgender, Genderqueer, Genderfluid, Two-Spirit, Agender, Bigender, Prefer not to
say, and a fillable Other option).

We predicted that the control colormaps would significantly outperform our novel colormaps,
due to their lack of aesthetic appeal compared to conventional diverging colormaps. Of our col-
ormaps, we predicted A-BMY (Ach-Blue-Magenta-Yellow) would perform the best, given that its
colors are the most distinct and harmonious.

Of the 60 polled individuals, N = 567 assented to the informed consent of the survey and
provided responses. 2 individuals identified themselves as having Protanomaly (Red-Weak) color-
blindness; the rest identified as having full-spectrum vision. Of our polled demographic data, the
average identified technology proficiency was 4.18 (scale 1 to 5), and the average identified data
visualization familiarity was 2.69 (scale 1 to 5). As for age, 23 respondents identified as being in
the 18 to 24 age range, 14 in the 25 to 44 age range, 12 in the 45 to 64 age range, 6 in the 65 or
older age range, and 1 preferred not to answer.
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Colormap name Average Rating Mode Rating Proportion of ratings ≥ 5

binary 5.66 8 0.6786
RdBu 6.14 5 0.7857
coolwarm 6.48 5 0.7857

A-BGY 4.93 4 0.4821
A-BMY 5.55 5 0.6429
A-BGS 3.82 4 0.3393
A-BMS 5.14 6 0.7857

Table 2: Survey results. N = 57, excluding non-respondents.

Figure 7: Average ratings per color scheme.

Our survey results (Table 2) show a slight preference amongst participants for the control
colormaps, although the difference between the control colormap binary and our novel colormap
A-BMY is minuscule (5.66 to 5.55) (see Figure 7). There is a significant dislike of A-BGS, and
comparing averages of binary, A-BMY, A-BMS, and A-BGY all lie within an interval of size 0.73.

However, we can get a clearer idea of the distribution of preferences through the more precise
view of the rating distribution Figure 8 offers. From this, we can extract that the distributions
participants appraised most often with at least a rating of 5 were RdBu and coolwarm in the control
group and A-BMS in the novel group. Generally, all distributions besides the green-centred novel
distributions are appraised with 5 or higher by around at least two-thirds of the participants.

2.2 Categorical color schemes

Choosing accessible categorical color schemes is a relatively simpler task. Choosing N different
colors that both look good in full-spectrum vision as well as distinct in other kinds of vision is
simple for relatively small N .

One thing to keep in mind is that the most accessible color schemes use non-color markings to
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Figure 8: Distribution of votes, grouped in consecutive buckets of size 2.

aid visualization, such as designing with shapes [4]. The benefits reaped from visualizations where
this is applicable applies also to full-spectrum vision, increasing readability.

Thus, ideally, for each category, there is some accompanying non-color aid to help differentiate.
Even when the information is technically parseable without the use of color, where color helps,
colorblind people would still appreciate some non-color aid to help them parse the information
easier.

For our three categorical use cases, this means:

1. Node types may have different colors to help users distinguish between different node types
at a glance. Importantly, this means there should be accompanying symbols.

2. Node focus may have different colors to help draw attention to focused elements, or prospective
focused elements. This can be made accessible with underlines.

3. Dark mode versus light mode is intrinsically accessible, done correctly.

Most important to figure out for the moment is a prospective categorical color palette and an
accompanying set of symbols. First, let us begin by evaluating the qualitative colormaps Matplotlib
provides. See Figure 9. Note that no colormap is fully accessible, and even limiting our categories
to 4 or fewer, the only ones that succeed universally are the initially monochrome schemes tab20b
and tab20c; tab20 almost succeeds but for anchromatopsia vision.

While we could fix this with a similar approach we applied for achromatopsia, an easier fix would
be to integrate symbols into our color scheme visualization. Such symbols are readily available,
depending on context. Differing border styles, a color-agnostic symbolic tag in addition to a color,
etc. There are no shortage of such strategies, but it is hard to forecast which symbols will be most
useful at this time.

3 Discussion

Our methodology and conclusions are limited by having to rely on simulated accessibility metrics.
In a perfect world, we would be able to survey individuals with each of at least the most common
vision types besides full-spectrum vision. A survey on that level is certainly beyond our resources.
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Figure 9: Coblis tests on the qualitative colormaps Matplotlib offers.

While our novel diverging colormaps are not the most aesthetically pleasing, they are useful
inclusions in a set of color palettes. They also provide for an interesting framework for creating
accessible color schemes which double as readable in full-spectrum views. More advanced linear
programming and solution finding could be used to handle simulated vision environments other
than achromatopsia, and could provide additional dual-accessible solutions.

4 Conclusion

We introduced a family of novel diverging colormaps which are linear under an achromatopsia view.
We chose 4 colormaps from this family and evaluated them against 2 standard diverging colormaps
and one linear colormap, all available by default in Matplotlib. We evaluated the chosen colormaps
through a survey, which showed that participants generally preferred the standard colormaps, but
also found two of our novel colormaps to be acceptable, being A-BMS and A-BMY; participants
decidedly did not generally like A-BGS and A-BGY.

We identify and reiterate the need for non-color indicators in the context of color used to
differentiate different categories.
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