
Review and Reformulation of the Sea Lion
Optimization Metaheurestic

Conor O’Brien
Computer Science
William & Mary

Williamsburg, United States
csobrien@wm.edu

Abstract—The Sea Lion Optimization Algorithm (SLnO) is
a recent metaheruistic optimization algorithm suitable for op-
timizing given functions over given search spaces. Its biphasic
behavior helps find minima in many circumstances, including
unimodal and multimodal distributions. We present the most
concise and best articulated formulation of SLnO to date, identify
shortcomings in the original formulation, and summarize the
strengths of SLnO.

Index Terms—optimization; metaheuristic optimization algo-
rithms; Sea Lion Optimization Algorithm (SLnO)

I. INTRODUCTION

Optimization problems are critical to many domains, in-
cluding machine learning, usually framed as finding local and
global optima for a given mathematical function [1]. Unlike
traditional optimization algorithms such as gradient descent,
which often impose specific assumptions on the problem
(e.g., requiring the function optimization be differentiable),
metaheuristic optimization algorithms generally make fewer
assumptions [8].

A prototypical formulation of a metaheuristic optimization
algorithm is Particle Swarm Optimization (PSO) [3]. PSO
operates by generating a swarm of particles (a set of points
in the search space), assigning each particle a random initial
velocity. Then, PSO iteratively updates each particle based on
factors like its velocity, random noise, the best position that
particle encountered, and the best position encountered by the
swarm overall.

Metaheuristic optimization algorithms, often inspired by
systems in nature, generally fall into one of three categories:
Evolution-based, physics-based, and swarm-based [5]. This
field of metaheuristics is fast-paced and receiving constant
innovations [8], with competitive algorithms numbering in the
hundreds [7].

In section 2, we reformulate the algorithm as set forth
Sea Lion Optimization Algorithm (SLnO) paper, informed
by existing implementations [7]. In section 3, we summarize
the strengths of the algorithm, as well as document the
shortcomings of the original formulation. In section 4, we
conclude with general thoughts about the field.

A. Notation

• [a, b] is the range of real numbers between a and b
inclusive.

• x ∼ U means x is sampled from a distribution U ,
assumed to be uniform unless otherwise specified.

• x ← E means update the value of x to be that of the
expression E.

II. SEA LION OPTIMIZATION ALGORITHM

Sea lions are uniquely situated in the animal kingdom
with immense intelligent and sensitive whiskers. The Sea
Lions’ whiskers allow them to sense prey and make immediate
decisions about prey’s “size, shape, and position” based solely
on the wakes and waves resultant from the prey’s movement
[5].

By leveraging both their individual sensing prowess and
their hierarchical social structure, Sea Lions engage in group
hunting as an optimal method of securing prey [5]. They
follow this hunting pattern:

1) Identify and follow prey individually;
2) Call upon other nearby Sea Lions to surround their

target; and
3) Converge on the prey to attack it.
These facts of nature inspire the mathematical model be-

hind the Sea Lion Optimization Algorithm (SLnO). Although
the authors separate the algorithm’s description into distinct
phases [5], we deem these phases to be mostly metaphorical,
and instead prefer the following, more mathematical definition.

Consider a function f : Rn → R. We wish to find a suitable
vector x such that f(x) is minimal over some search space
S, usually a range [bl, bu], which controls the minimal and
maximal values for each component xj ∈ x. As a swarm-
based metaheuristic, SLnO starts with p initial particles (sea
lions). Each sea lion SLk is initially set to a uniformly random
position in S. We evaluate our function f(SLk) for each sea
lion and keep track of the sea lion which best minimizes our
function, called SLbest [5].

The SLnO algorithm runs over N iterations. In each iter-
ation, we perform one of two updating routines, depending
on a condition the authors give as SPleader < 0.25 [5]. For
the effect of the algorithm, this can be treated as a black-box
stochastic process, and, according to our analysis in the next
section, seems to be able to be substituted with other stochastic
processes. Depending on the choice made, at any iteration, the
algorithm either hunts or circles.

A. Hunt

The hunt process involves two phases, controlled for by
a linearly decreasing constant C. C ranges from 2 in the
first iteration down to 0 (or close to 0) in the last iteration,
and controls the target T the algorithm nudges each particle
towards1. We have

T =

{
SLbest if C < 1

SLrand if C ≥ 1
,

where SLrand is a sea lion randomly sampled from the
population. Then, depending on T and a random variable
(either scalar or vector) b ∼ [0, 1], the hunt process updates
the position of each sea lion as

SL′
k ← T− C|2bT− SLk|.

B. Circle

The circle process distributes sea lions around the current
best target in an n-sphere. For some random variable (either
scalar or vector) m ∼ [−1, 1], the circle process updates the
position of each sea lion as

SL′
k ← SLbest + cos(2πm)|SLbest − SLk|.

After either the hunt process or the circle process updates
the positions of each sea lion, the algorithm must perform
a normalization step. Each component xj ∈ SLk must be
constrained to the search space S by replacing the affected
xj ← x′

j ∼ S.
Once the algorithm executes all N iterations, SLnO emits

SLbest as the final solution. This may optionally be augmented
with a pocket algorithm to save potentially better intermediate
optimizations, although, for many cases and parameter com-
binations, the algorithm terminates with the best solution it
found.

III. ANALYSIS

A. Performance

The SLnO authors tested the algorithm on 23 mathematical
function optimization problems of varying complexity and
modes. As compared to 5 other metaheuristics, SLnO consis-
tently matched or outperformed the competition, performing
the best in 16 cases across the board [5].

B. Underspecification

Unfortunately, the original paper by Masadesh et al. is
underspecified, leaving implicit things perhaps clear to the
authors, but unclear to those reviewing the paper. In crafting
this review, we identified sources of confusion in the original
statement of the algorithm [5], which filters down into subse-
quent papers [2] [4]. Although these subsequent papers which
utilize SLnO, do so with reported success, their restatements
of SLnO are just as imprecise and unhelpful as the original

1The metaphorical motivation is when C ≥ 1, the sea lions engage in search
patterns, and when C < 1, the sea lions engage in “dwindling encircling
techniques” [5].

Fig. 1. The optimization process varying various threshold parameters x < t
tested in place of SPleader < 0.25 for x ∼ [0, 1]. Optimizing the function
F2(x) =

∑n
i=1 |xi|+

∏n
i=1 |xi| from [5] with a population p = 300, over

N = 500 iterations, n = 30, and search space S = [−10, 10].

paper; the lack of accompanying code renders their theory
injurious to understanding.

To rebut this confusion and imprecision, we identify explic-
itly the following shortcomings in the original paper.

1) Calculating SPleader: While the authors give
SPleader = |V1(1 + V2)/V2|, defining V1 and V2 as the speed
of sound in water and air, respectively, and compute SPleader

as their branch condition [5], they fail to give meaningful
definitions of these terms beyond the metaphorical motivation.
SLnO implementations replace this computation by various
stochastic approximations, either computing V1 = sin 2πr
and V2 = sin 2π(1 − r) with r ∼ [0, 1] [7] or forgoing the
original equations for a simple threshold comparison (e.g.
t ≥ 0.6 for t ∼ [0, 1] [6]). We produce our own comparison
of varying thresholds (see Figure 1), and find that thresholds
t ∈ [0.1, 0.9] seem to work about as well as each other. We
expect, however, choice of threshold could be impacted by the
function to be optimized, and anticipate future investigation
on this front.

2) Normalization: The aforementioned normalization step
to ensure the position of all sea lions is noticeably absent from
the original paper. Without this step, the positions of sea lions
overwhelmingly tend to escape the search space, rendering
the resultant optimization useless. This normalization step is
thanks to the work of the mealpy implementation of SLnO
[7].

IV. CONCLUSION

The Sea Lion Optimization Algorithm provides a competi-
tive metaheuristic which is able to optimize many mathemati-
cal functions over high-dimension vector spaces. We provided
a more precise formulation, and identified shortcomings in the
original formulation.

The fast pace of research in the field of metaheuristic
optimization algorithms, both in developing novel algorithms,

and iterating and utilizing existing algorithms, seems to leave
the field in a precarious position of balancing progress with
intelligibility. Papers documenting algorithms ought be self-
sufficient; and if not self-sufficient, they ought provide access
to their functional code, which can speak for itself.

In light of that, all code used in this paper is available
at this GitHub link: https://github.com/ConorOBrien-Foxx/
Sea-Lion-Optimizer-Summary.

REFERENCES

[1] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cam-
bridge university press, 2004.

[2] Nidhal El-Omari. Sea lion optimization algorithm for solving the
maximum flow problem. 11 2021.

[3] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings
of ICNN’95 - International Conference on Neural Networks, volume 4,
pages 1942–1948 vol.4, 1995.

[4] Kamal Kumar Gola, Nishant Chaurasia, Bhumika Gupta, and Deepak
Singh Niranjan. Sea lion optimization algorithm based node deployment
strategy in underwater acoustic sensor network. International Journal of
Communication Systems, 34(5):e4723, 2021. e4723 IJCS-20-1176.R1.

[5] Raja Masadeh, Basel Mahafzah, and Ahmad Sharieh. Sea lion optimiza-
tion algorithm. International Journal of Advanced Computer Science and
Applications, 10:388–395, 05 2019.

[6] pfnet-research Team. batch-metaheuristics. https://github.com/
pfnet-research/batch-metaheuristics, 2021.

[7] Nguyen Van Thieu. mealpy. https://github.com/thieu1995/mealpy, 2023.
[8] Xin-She Yang. Metaheuristic optimization: Algorithm analysis and open

problems. In Panos M. Pardalos and Steffen Rebennack, editors, Ex-
perimental Algorithms, pages 21–32, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

