
StellerJ: A Compiled Approach to the Functional
Array Language Paradigm

Conor O’Brien
College of William & Mary
Email: csobrien@wm.edu

Abstract—StellerJ is a dialect of the functional array program-
ming language J, targeted at LLVM. This paper examines the
potential array languages like J have with high-performance com-
puting by exploring the potential benefits of compiling instead of
interpreting such languages. Compiling tacit structures involves
dissecting the idioms used to construct them into compilable and
analyzable fragments. The StellerJ implementation is compared
for execution speed against equivalent programs in J, and
in two approaches of programming in C++ (vectorized and
unvectorized).

I. BACKGROUND

Languages like J [1] and APL [2][3] are two common and
influential instances of the functional array language paradigm.
They are defined primarily by two capabilities: Functional
programming and array programming. While usually imple-
mented via interpreters with code being developed via read-
eval-print loops, both language support standalone scripts,
which are executed through the interpreter. This provides our
motivation: We can leverage the static nature of such script
files and provide corresponding compiled binaries, which
reduces the overhead of interpretation, as well as offers a
higher degree of control over static optimization.

There are two main challenges in compiling a functional
language such as J. The first challenge designing an effective
compiler for first-order functions (verbs). Haskell [4] is an
example of an effective compiled functional language, al-
though it achieves compilation of tacit structures by defining
equivalences to corresponding explicit structures. The second
challenge emerges from J’s powerful, often-tacit syntax, which
tends to create non-obvious control paths.

With these challenges, however, come great benefits: Lan-
guages like J, being array-based, provide great opportunities
for parallelism [5]. Since verbs explicitly operate on lists
and tables, many operations, especially mathematical ones,
are naturally expressed via vectorization, leading to intrinsic
and easily-identifiable speed-ups by merely using conventional
operators.

The IR we target is LLVM [6]. LLVM is a useful target IR as
it is portable, able to be deployed on many systems. Further, it
comes with a slew of existing optimizations via the opt tool,
which relaxes the need to reimplement common optimization
techniques within the scope of this compiler. This endeavor
will be similar in effect to aplc [7], an existing compiler
for APL also targeting LLVM. LLVM is particularly useful
because of the native vector support through mathematical

Fig. 1. The majestic Steller’s Jay for which StellerJ is named. Picture Credit:
Julietfiss on Wikimedia.

commands, such as add and mul; the LLVM IR can be fur-
ther targeted towards specific vectorization methods whenever
possible.

Naturally, there are two parts to the functional array lan-
guage paradigm: functions and arrays. We will review some
principles of each.

A. Functions

Functions, also referred to as verbs, are one of the pri-
mary constructs in appropriately-named functional languages.
Different from imperative programming, functions may be
operated upon and combined in different ways to produce new
functions, often without need of referencing data by name. One
central aspect of functional programming is composition: Let
f, g be functions; then, their composition

(f ◦ g)(x1, . . . , xn) = f(g(x1, . . . , xn)).

While functions conventionally can take an arbitrary spec-
ified number of parameters, it is usual in the context of J
and APL to talk about only one- and two-argument functions,
called monads and dyads, respectively. It is in this context
the rationale behind the term verb emerges. Carrying on with
this analogy to speech, nouns are the arguments to function,
and represent data. Verb modifiers are either called adverbs or
conjunctions, depending on whether they act upon one verb,
or upon two in concert. Thus, composition as defined above
is a conjunction.



One important adverb is reduction, also known variously
as folding, insertion, and injection. The term insertion makes
the adverbs behavior most clear: It modifies a verb by “in-
serting” it between every element in an input vector. We can
consider the summation operation on a vector to be addition
reduction. Although there are two directions one can reduce
in, we shall assume right-to-left reduction (i.e., computed as
f(a0, f(a1, · · · f(an−1, an)))) symbolically as ⟨f⟩.

Which adverbs and conjunctions a language defines are
those which are useful to accomplish tasks. In theory, any
modification of one or two verbs can be defined as an adverb
or conjunction. For the sake of this paper, looking forward
to potential optimizations, we will define here the inner
product. Similar to matrix multiplication, the inner product is a
conjunction f⊗g which operates upon two input matrices, say
A and B. Suppose dim(A) = [N,K] and dim(B) = [K,M ].
Then, dim((f ⊗ g)(A,B)) = [N,M ] and

(f ⊗ g)(A,B)i,j = f(G(i, j)),

where
G(i, j)k = g(ai,k, bk,j), 0 ≤ k < K.

In addition to composition and inner product, we give
meaning to a train of consecutive verbs. While not strict
conjunctions, fork and hook are important verb modifiers. A
fork of 3 verbs {f, g, h} is defined monadically as dyadically:

{f, g, h}(y) = g(f(y), h(y))
{f, g, h}(x, y) = g(f(x, y), h(x, y))

g is always a dyad, and the arity of f and g varies with
the arity of the invocation. A hook {g, h} is defined for both
arities:

{g, h}(y) = g(y, h(y))
{g, h}(x, y) = g(x, h(y))

In general, a train of verbs is interpreted by parenthesizing
the rightmost 3 verbs into a fork, or the remaining 2 verbs
into a hook, if less than 3, until a single verb remains. For
example, the 6-train {f0, f1, f2, f3, f4, f5} is interpreted as
{f0, {f1, f2, {f3, f4, f5}}}: two forks and a hook.

These mathematical concepts correlate directly with J con-
cepts. We may therefore express the discussed mathematical
notation in the language of J. Let + and * represent their usual
mathematical operations, / be a postfix adverb representing
reduction, and . be an infix conjunction representing the inner
product ⊗, we may define the matrix product as

mat_prod =: +/ . *

B. Arrays

Arrays are a common data structure in program, among
the most simple. In general, array languages generalize the
concept of the 1D array (the list) to tensors, an array whose
dimension can be arbitrary. Matrices are equivalent to 2-
tensors. We choose to work with packed (i.e., non-sparse)
arrays for the sake of simplicity. We also use a simple
linear representation of arrays, where multiple dimensions are

concatenated, and dimension boundaries are implied by an
additional dimension container. So, to store an array, we store
the following information:

1) A linear array of the data;
2) The total amount of data present;
3) A linear array of the dimension of the data; and
4) The total amount of dimensions present.

II. DESIGN

We designed StellerJ as a dialect of J which serves as a
frontend for LLVM. The language’s syntax is a subset taken
directly from J. It features a drastically reduced vocabulary for
the scope of this project, although it still features the usual
arithmetic operators.

A. Vectorization

Vectorization emerges here from the union between tensors
and verb modifiers. When manually optimizing reduction
operations using SIMD (Single Instruction, Multiple Data), the
usual approach is to perform that same reduction on groups
of SIMD registers and the corresponding SIMD operation.
Summation is usually optimized this way: Read consecutive
elements into a SIMD register and add that to a running SIMD
register sum until no elements remain. This optimization,
though it computes the sum in a different manner (as, say,
(a0+a4+· · · )+(a1+a5+· · · )+· · · instead of a0+a1+· · · ),
works due to the associativity of addition. However, even non-
associative operators can be optimized similarly, as long as
they can be restated. Right-folding subtraction is equivalent to
summing the original vector multiplied pairwise by the repeat-
ing vector [1,−1]: a−(b−(c−d)) = 1·a+−1·b+1·c+−1·d,
for example.

There are a limited set of SIMD instructions, so the set
of operations explicitly able to be formed using them is
also limited. If an operation is able to be efficiently formed
using SIMD instructions, we term it vectorizable. We call a
verb vector reducible if it is can be expressed in terms of
vectorizable, associative operators.

Thus, for any vector reducible verb f , we have the the re-
duction ⟨f⟩ can be SIMD optimized. For any vector reducible
verb f , and for any vectorizable verb g, we have the inner
product ⟨f⟩ ⊗ g can be SIMD optimized. Using these two
optimizations, we can generally provide SIMD optimizations
for verbs following these constructions.

B. StellerJ

As mentioned, StellerJ is a compiler frontend, which means
it consists of three steps: Tokenization, Parsing, and IR gen-
eration.

1) Tokenization: The J grammar is defined relatively sim-
ply, and can be inferred from the behavior of the J verb
primitive ;: (Words). Tokenization in StellerJ proceeds by
first scanning the input for tokens and thereafter classifying
them with a classifier. We first approach the problem by cre-
ating a regular expression which scans through the input string



greedily for tokens, according to the following preference
order.

1) String: A single quote, followed by 0 or more of
any combination of non-single quotes, or paired single
quotes, followed by a final single quote.

2) Comment: The phrase NB. not directly followed by
other postfix ngraph characters (. or :), expanded to
the next newline character, or the end of the input, if no
more newline characters remain.

3) Word: An alphabetic character of any case, followed by
0 or more alphanumeric characters and/or underscores,
followed by 0 or more postfix ngraph characters.

4) Spaces: 0 or more space characters (0x20).
5) Numbers: A number or underscore, followed by any

combination of alphanumeric characters, underscores
(J’s negative sign), and periods. Each number may recur-
sively be followed by a space and another number. The
entire number expression may be followed optionally by
0 or more postfix ngraph characters.

To match J’s parsing behavior, we do not emit space tokens
in our tokenizer, nor do we group together numbers which
include a colon. We classify these scanned tokens according to
their lexical content, as follows. This also follow’s J behavior
of first producing an untagged list of tokens, and classifying
them using simple lexical rules.

1) The set of available verbs, adverbs, conjunctions, control
words, and copula are defined explicitly in a correspond-
ing list, and tagged accordingly. We also tag for_var.
manually, since it is a single expression with variable
content, namely, var.

2) We group comments by matching against the same
behavior described above.

3) Words are defined to be any token whose initial character
is alphabetic.

4) Numbers are defined to be any token whose initial
character is numeric or the underscore.

5) Strings are defined to be any token whose initial char-
acter is a single quote.

6) Each parenthesis is grouped separately.
7) No other tokens are recognized.

After this, all tokens are correctly categorized and emitted
as a list to the next stage.

2) Parsing: Parsing in StellerJ is divided into two steps.
First, we have an initial parsing step, which performs ele-
mentary static analysis to ensure variables make sense, and
groups the different parts of speech into separate tree nodes.
The second step, grouping, gives names to tree nodes, as well
as traverses nodes to pack the conceptual representation of
a tree structure. The main conceptual categories proceed as
follows:

1) Variable Assignment (labeling data)
2) Verb Assignment (unimplemented)
3) echo statements (prints to standard output)
4) time statements (used for the evaluation)

3) IR Generation: The final step in StellerJ is the IR
Generation step. LLVM is emitted in accordance to the iden-
tified group structures. The most meaningful statements are
copula (assignment) statements, which modify the state of
user-specified variables. For certain functions, such as state
generation for the evaluation tasks and the timing functions,
we wrote C++ code and extracted the generated LLVM code
into a header file which we ship with every compiled StellerJ
program.

Between our two main datatypes (integer scalars and inte-
ger tensors), we implemented the usual arithmetic operators
(addition, subtraction, multiplication, and division represented
respectively by +, -, *, and %) for both scalar and tensor cases.

We design an LLVMEmitter capable of writing LLVM
code through a Ruby API to targeted functions, allowing
iterative development of multiple functions concurrently while
compiling. Types are abstracted, but it also still allows fine-
grained control over the LLVM output. It consolidates the
effort required for instantiating structs in LLVM, and
allows interfacing with the custom JITensor datatype on
a high level. The emitter also keeps track of variable size
to ensure proper alignment and function signatures to allow
the LLVM programmer to specify arguments with the emitter
deducing the types.

Each of the four described statement types in Parsing has
its own compilation strategy with various substeps. Different
structures must be compiled for variable assignments to reflect
the corresponding datatype. While integer assignment is fairly
straightforward, any initialization of a tensor (temporary or
permanent) requires allocating memory in a few different
locations, on top of maintaining correct labels for the contents
and parameters of the tensor. Beyond the top-level assignment
statements, we used a depth-first recursive compilation strat-
egy for converting from expressions to LLVM instructions.
In general, temporary registers are created every time the
algorithm references data a variable points to; although this
sometimes results in duplicate loads, this is trivially optimized
away through opt.

For compiling adverbs and conjunctions, it was necessary
to create intermediate LLVM functions, which are then passed
through the program as data via function pointers. While some
compilations could be inlined, such as echo +/ 1 2 3,
more complex compilations such as echo x +/ . * y
necessitate either intermediate functions or to be fully inlined,
the latter of which is incredibly difficult to get correct.

C. Internal Representation
This implementation of StellerJ uses LLVM 64-bit signed

integers as scalars. Since J’s native vectors are regular arrays,
they can be stored as flat arrays with an appropriate associated
dimension. (E.g., a vector whose shape is 3x4x2 may be
represented as the pair consisting of an array of 24 elements
and the length-3 array 3 4 2.)

D. Syntax
Our program compiles definition statements of arbitrary

complexity, restricted to the usual arithmetic operators. For



example, we have the following:

id3 =: 3 3 $ 1 0 0 0 1 0 0 0 1
all_fives =: 3 3 $ 5 5 5 5 5 5 5 5 5
id3_fives =: id3 * all_fives
my_array =: 3 6 $ 1 2 3
echo id3_fives +/ . * my_array
echo id3_fives +/ . + my_array
id3 =: id3 + id3 + id3
echo id3
echo */ 1 1 1 1 + i. 4

This code showcases the $ operator retrofitted to determine
static array initialization; pairwise multiplication of tensors;
recycling; the generality of the inner product and reduction
modifiers; the sanctity of variable read-writes; and the correct
evaluation of complex expressions.

III. EVALUATION

We compare four modes of operation: StellerJ, J, C++,
and C++ with SIMD. We compile the compiled modes using
maximal optimization -O3. We compare for performance on
the following 3 tasks:

1) Array generation and summation: Description: Allocate
an array of 3.2× 108 64-bit integers, populate the array with
consecutive integers starting at 1, and iterate over the array,
procuring the sum. Approach: In J, a script version of the
natural approach +/i.320000000 suffices. In unvectorized
C++, pre-allocating a std::vector using the reserve
method, and implementing the description imperatively . In
vectorized C++, SIMD programming is used for the vector
summation step. In StellerJ, we use the following code for 5
trials:

arr =: i. 320000000
time +/ arr
time +/ arr
time +/ arr
time +/ arr
time +/ arr

2) Matrix multiplication: Description: Allocate space for
two 1024x512 matrices (dimensions related by transpose),
populate them with random values, and compute their matrix
product. Approach: In J, we leverage the dot-product con-
junction to define matrix multiplication verb defined earlier
as mat_prod =: +/ . * (sum together multiplied cor-
responding elements). In unvectorized C++, we implement a
naı̈ve imperative matrix multiplication algorithm. In vectorized
C++, we again use SIMD programming in the computation
step by stepping along a fixed size. In StellerJ, we use the
following code for 5 randomized trials:

A =: 1024 task2 512
B =: 512 task2 1024
time A +/ . * B
A =: 1024 task2 512
B =: 512 task2 1024

time A +/ . * B
A =: 1024 task2 512
B =: 512 task2 1024
time A +/ . * B
A =: 1024 task2 512
B =: 512 task2 1024
time A +/ . * B
A =: 1024 task2 512
B =: 512 task2 1024
time A +/ . * B

3) Multiplying multidimensional arrays: Description: Al-
locate space for three multidimensional arrays (each of size
70x40x30x64), and populate the first two with random inte-
gers. Then, compute their elementwise product and store the
result in the third. Approach: In J, multiplication implicitly
vectorizes, so this is achieved using the * verb readily. In
unvectorized C++, we simply iterate using the same iteration
basis over each array and multiply corresponding values. In
vectorized C++, we batch multiplications together using SIMD
programming. In StellerJ, we used the following code for 5
randomized trials:

A =: task3 70 40 30 64
B =: task3 70 40 30 64
time A * B
A =: task3 70 40 30 64
B =: task3 70 40 30 64
time A * B
A =: task3 70 40 30 64
B =: task3 70 40 30 64
time A * B
A =: task3 70 40 30 64
B =: task3 70 40 30 64
time A * B
A =: task3 70 40 30 64
B =: task3 70 40 30 64
time A * B

IV. RESULTS

In our evaluation, we compared the performance of four dif-
ferent language configurations on a common hardware setup,
the Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz processor.
The reported results are based on the average execution times
from five independent trials. It is important to note that
the reported times exclude any initialization or input/output
operations, focusing solely on the execution of the respective
programs. The results are presented both in tabular format in
Figure 2 and visually in Figure 3.

Among the tested configurations, StellerJ consistently per-
formed the worst across all three tasks, exhibiting significantly
slower execution times. On the other hand, J consistently
outperformed the competition by a wide margin in tasks 1
and 2, demonstrating its superior efficiency in these scenarios.
Perhaps unsurprisingly, the unadorned C++ implementation
showed the best performance in task 3, albeit by a narrow
margin. This result suggests that the additional overhead



Execution time (s)
task StellerJ J C++ C++ SIMD

1 1.515 0.1629 0.8182 0.8452
2 3.954 0.1306 1.742 0.7552
3 0.04424 0.01431 0.003862 0.006830

Fig. 2. Table showcasing our results; lower is better.

Fig. 3. Visualization of Fig. 2.

introduced by SIMD vectorization did not yield substantial
performance improvements in this particular task.

Figure 2 provides a comprehensive overview of our re-
sults, depicting the execution times (in seconds) for each
task and language configuration. Lower values indicate better
performance. The table clearly illustrates the disparities in
execution times across the different configurations, reinforcing
the conclusions mentioned earlier. Additionally, Figure 3 offers
a visual representation of the results presented in Figure 2, pro-
viding a graphical perspective on the performance variations.

V. CONCLUSION

In this study, we evaluated the performance of four different
language configurations on three computational tasks. While
J emerged as the most efficient configuration for tasks 1 and
2, and unadorned C++ proved to be the best option for task 3,
our architecture StellerJ significantly underperformed across
all three tasks, despite using the same optimizations as C++
-O3.

We suspect that the underperformance of StellerJ may be
due to the way functions are tagged for specific optimizations,
which is currently beyond our scope of understanding and
debugging. While we initially planned to continue optimizing
StellerJ by taking advantage of the vectorizable nature of
functional operators, our results suggested that this approach
was not effective. Thus, we did not pursue further optimization
in this direction.

Despite the limitations we encountered, there are many
avenues for future work. For example, we only investigated the
potential for SIMD optimization on a limited set of modifiers.
There is ample opportunity to explore other modifiers for
potential SIMD optimization. Furthermore, there are many
useful features of the J language that could be incorporated
into StellerJ, such as more of J’s verbs, support for additional
datatypes, and direct functions and control structures.

Our study highlights the importance of carefully consider-
ing language choice and optimization strategies for specific
computational tasks, and in part demonstrates that being an
interpreted language is not necessarily a burden to its per-
formance. Although our findings were not ideal for StellerJ,
we learned valuable lessons about language implementation,
design and optimization, as well as an increased familiarity
with the tools and functionality LLVM has to offer.

REFERENCES

[1] R. K. Hui, K. E. Iverson, E. E. McDonnell, and A. T. Whitney, “APL\?”
in Conference Proceedings on APL 90: for the future, 1990, pp. 192–
200.

[2] P. S. Abrams, An interpreter for” Iverson notation”. Stanford Univer-
sity, 1966.

[3] D. Bowman, “Dyalog APL/W,” ACM SIGAPL APL Quote Quad, vol. 23,
no. 2, pp. 16–23, 1992.

[4] S. P. Jones, C. Hall, K. Hammond, W. Partain, and P. Wadler, “The
Glasgow Haskell compiler: a technical overview,” in Proc. UK Joint
Framework for Information Technology (JFIT) Technical Conference,
vol. 93, 1993.

[5] R. Bernecky, “The role of APL and J in high-performance computation,”
in Proceedings of the international conference on APL, 1993, pp. 17–32.

[6] C. Lattner and V. Adve, “LLVM: a compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004., 2004, pp. 75–86.

[7] jiixyj, “aplc,” https://github.com/jiixyj/aplc, 2012.
[8] “5!: Representation,” https://www.jsoftware.com/help/dictionary/

dx005.htm, [Online; accessed 6-April-2023].
[9] A. J. Perlis and S. Rugaber, “Programming with idioms in APL,” ACM

SIGAPL APL Quote Quad, vol. 9, no. 4-P1, pp. 232–235, 1979.
[10] J Wiki, “NuVoc — J Wiki,” https://code.jsoftware.com/mediawiki/index.

php?title=NuVoc&oldid=41417, 2023, [Online; accessed 6-April-2023].


