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Abstract
Previous surveys of security vulnerabilities have predomi-
nately focused on static identification. This paper seeks to
fill the relatively unexamined niche in security survey litera-
ture which examines the design of programming languages
themselves. It examines the vulnerability features of par-
ticular programming languages, as well as general features
of programming languages, and potential methods used to
mitigate the issues arising thereof. I express the language
design maxims of Security-convenience alignment, Security
consciousness, and Programmer-first safety.

CCS Concepts: • General and reference → Surveys and
overviews; • Security and privacy; • Software and its
engineering;

Keywords: programming languages, language design, vul-
nerabilities

1 Introduction
Dowd et al. [15] give a definition of vulnerabilities:

In the context of software security, vulnerabili-
ties are specific flaws or oversights in a piece of
software that allow attackers to do something
malicious—expose or alter sensitive informa-
tion, disrupt or destroy a system, or take control
of a computer system or program.

They further distinguish between the general classes of
design, implementation, and operational software vulner-
abilities. Herein, I will focus primarily on implementation
software vulnerabilities, those that depend more so on the
specific code fragments used, rather than conceptual flaws,
or flaws that appear when the code is used and integrated
into its environment. Implementation software vulnerabili-
ties arise within particular a particular code fragment which
is “generally doing what it should” [15], but nonetheless a
mistake is present.

Previous survey approaches [17, 23] focus on vulnerability
analysis methods for the discovery of such software vulner-
abilities. This is particularly useful for ensuring the security
of existing code, or code already in development.

Beyond analyzing individual software fragments, however,
lies a broader topic: Programming language features (PLF)
themselves can be assigned a security value, and particularly
insecure PLF can promote insecurity for programmers of
that language. One may risk writing more insecure software

by choosing one language over enough, especially given the
task at hand.
Given the variety of experiences programmers may be

equipped with, it is unreasonable to expect every program-
mer and developer to be well-versed enough in how secure
the various features in their programming language are. The
USDoL Occupational Outlook Handbook [4] regards a Bach-
elor’s degree as merely often required for entry-level cor-
porate programming, although for more advanced software
development positions, a master’s degree may also be a re-
quirement [9]. There is also the matter of independent devel-
opers, who not only are not necessarily vetted for experience
by nature of their contract, but also must balance competing
professional and market incentives [25].
In this paper, I will survey popular programming lan-

guages and analyze their strengths and weaknesses at a PLF
level. I will also examine classes of programming language
features which are open to security discourse. After that,
I will discuss my findings in general and propose general
advice for programming language designers and software
developers.

2 Theoretical Background
There are widely-adopted secure PLF that one may take
for granted at this mature stage of programming language
design, such as static typing [16] in most compiled languages
(ML, C, Java, etc.). As most software vulnerabilities are also
software bugs [15], an essential component of designing a
secure language are designing one which naturally leads to
less bugs, and consequently, less software vulnerabilities.

Secure language designed can be achieved in a variety of
ways, but some common approaches are by implementing
comprehensive error and warning reporting, excluding inse-
cure functions from the language specification, and having a
well-defined software life cycle that allows for rapid changes
responsive to vulnerability discovery.

A language’s implementation is therefore of equal impor-
tance to its specification, if not of greater importance. Al-
though one can specify a standard with almost mathematical
precision, the exact implementation details are still liable to
bugs, specification misinterpretations, and even implementa-
tion design choices that the specifications may not or do not
account for. Even intentional design features may be harmful.
In the next few subsections, I wish to survey some instances,
historical and modern, where programming languages have
or had notable security flaws within the language itself.
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3 Language Survey
No discussion of programming language design would be
complete without examining how existing programming
languages and PLFs perform. I will instantiate the concepts
outlined in the theoretical section above to particular lan-
guages, showing where they fail and succeed.

3.1 C and C++
C is a popular language with some ancient and insecure
features, most often used for low-level programming, but
also used significantly for generic programming (even in-
cluding the Python reference implementation [27]). Some C
PLFs can be directly identified with common and dangerous
classes of vulnerabilities, such as the generic buffer overflow
issue, as well as the language-specific format string attack.
C++ is vulnerable to these same vulnerabilities in that most
insecure C code fragments which fall in one of the below
categories still compile in C++ without warning, although
such programs are hardly reminiscent of idiomatic C++.

3.1.1 BufferOverflow. The library functions gets, scanf,
sprintf, and strcpy are each liable to buffer overflow vul-
nerabilities. Previous methods attempt to combat these vul-
nerabilities dynamically [22] or statically [17, 21]. The root
issue, however, lies within both C as a language and as a
specification. First, a positive: The C ISO/IEC 9899:201x stan-
dard [18] officially deprecated the gets function, and most C
modern compilers [3, 6] will not compile code using the func-
tion. Yet, some C compilers, such as The Tiny C Compiler
(tcc) [10] have not removed the function, and most compilers
still offer ways to access older standards which do not fully
remove gets, such as gcc –std=iso9899:199x. So long as
there are methods to use the function, a sufficiently deter-
mined programmer, perhaps motivated by trying to update
legacy code, can enable the usage of gets in most cases.

Though the current state of getsmay not raise much con-
cern, the remaining functions I mentioned have yet to be dep-
recated or addressed in any way, neither by language speci-
fication nor implementation. For instance, despite featuring
an egregious buffer overflow vulnerability via unchecked
strcpy, the following C program compiles without error or
warning in major C and C++ compilers [3, 6], sometimes
even without a runtime error [3], all while using debugging
and warning compiler flags (e.g. gcc -g3 -Wall):

#include <stdio.h>
#include <string.h>

int main(int argc, char** argv) {
char buf[10];
strcpy(buf, argv[1]);
return 0;

}

It was easy to deprecate gets because of its unequivocally
dangerous behavior. Although these remaining functions
do not have such strong arguments for removal, such as
the legitimate usage of, say, strcpy(units, "quarts");
[18], the more dangerous usages of this function, such as the
above code snippet, are not guarded against, despite being
somewhat predictable in nature.

3.1.2 Format String Attack. Format string attacks can be
considered a subset of buffer overflow vulnerabilities, but the
distinctions in attack method and mitigation are notable for
this survey. Examine the printf family of functions, which
take a format string as a first parameter, followed by any
number of parameters which are consumed as part of parsing
the format string. For example, the following C code prints a
string followed by an integer according to the given format
string:
#include <stdio.h>

int main(int argc, char** argv) {
printf("%s / %i\n", argv[1], argc);
return 0;

}

The intention for this family of functions is for the format
string to be known at compile time, or at least be generated
with predictable behavior. Given the low-level nature of C,
there is no error checking involved at runtime, but instead
there are warnings given for a mismatch between format
string types and supplied types, as well as missing or surplus
parameters, when compiling with warnings enabled.
Now, consider the “simplest” method to write a string

to STDOUT without a trailing newline. The uninitiated in
this particular attack may well say printf(string) instead
of the safer printf("%s", string);, which is where the
vulnerability arises. In such a case, the supplied string is
interpreted as a format string, and when an external agent
has control over what the contents of that string are (e.g., it
comes from STDIN, a command line argument, or a remote
request), then they can perform the format string attack.

As mentioned, the printf family of functions do not per-
form runtime checks on their arguments. Due to C’s im-
plementation of variadic functions (i.e., functions without
a fixed number of arguments), the length is unknowable,
and must either be supplied (inconvenient) or inferred (as in
printf). The vulnerability emerges with the va_arg macro,
responsible for incrementing the argument pointer and ac-
cessing the next argument supplied to the function. Since the
arguments to printf exist on the stack, va_arg will read
successive entries from the stack. This means it can leak
information and even lead to stack corruption.

While practical format string attacks able to redirect pro-
gram execution and leak potentially sensitive data exist [22],
modern compiler technologies can at least partially mitigate
these vulnerabilities, although not insurmountably [26].
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3.1.3 Discussion. One could argue the aforementioned
proposal for warnings about insecure behavior in these C
functions cannot be reliably generated statically. By nature
of C’s design, there still remains the more general issue that
there are no simultaneously safe and convenient alternatives
to functions like strcpy; to be “extra safe”, one must use
strncpy and supply the number of bytes to read manually,
thereby sacrificing the convenient syntax of strcpy. Were
C’s strings necessarily coupled with the length of their con-
tents, then the concepts of safe and convenient could be
merged into a safe variant of strcpy which incorporates
the usual security checks one would need to do if using the
function with untrusted source input. Of course, given the
low-level objectives of C, as well as the lack of inclusion of a
standard string type, this solution is hardly tenable for C.
So long as the insecure versions of these functions exist

within C, programmers, particularly more novice program-
mers, will use them in production code, especially since they
also appear to be the most convenient expressions of certain
code patterns. Although there exist countermeasures to such
insecurities creeping in within the software development
life cycle, such as code review, the mere existence of such
functions necessitate that, as imperfect agents, programmers
will invariably introduce these insecure functions to their
code despite the countermeasures.

3.2 Python 2 and 3
Let’s turn to a much more beginner-friendly family of lan-
guages: Python. Although this example is primarily histori-
cal, as opposed to the previous example, which showcases
existing insecure PLF in C/C++, it still serves as a useful
point of discussion.
In Python 2, there are two functions which obtain a line

of input from STDIN: input and raw_input. From a lan-
guage design perspective, input is to be used to allow the
user to input Python objects for manipulation of the pro-
gram without having to force the Python programmer to do
parsing on their own. It might be desirable for easy parsing
of a requested input of an array of integers, for example.
In practice, the input is parsed by evaluating it as Python
code. In a Python program which imports os, for example,
we can supply the program that uses input with the pay-
load os.system("curl https://evil.domain/hack.sh |
bash") to execute any bash file remotely via the shell, ele-
vated to the process privileges.

Similar to the process of deprecating gets in C, the func-
tionality of Python 2’s input was superseded in Python 3 by
the functionality of raw_input, which simply reads a line
from STDIN as a string and returns said string.

3.3 JavaScript
While this section could have alternatively been written
about other interpreted languages like Python or Ruby, I
choose JavaScript specifically because it is the language of

browsers. The internet has a wonderful capacity to connect
individuals and allow them to share their experiences. In turn,
programmers must be diligent in how they enable users to
communicate and share information with each other. I will
return to this point in a moment.

JavaScript, like other interpreted languages, has a function
which allows you to evaluate a string as code in the same
language: eval. In a way, it poses a problem similar to the
problem Python 2’s input did, insofar as Python 2 implicitly
calls exec raw_input() when evaluating input() (where
exec is Python 2’s equivalent to eval in JavaScript). How-
ever, because you must make an explicit call to eval, the
differences in how the programmer uses it differ slightly.
Some programmers may simply be unaware of the implica-
tions of calling eval on a user-supplied input. Others may
think they are safe in performing input sanitation/validation
on the string they pass to eval.

As a motivating example of the allure and consequent per-
ils of eval, imagine designing a calculator web application,
where users can share their input expressions to other users
as links. Naturally, one might wish to leverage JavaScript’s
eval command to do the brunt of the work. Keeping input
validation in mind, one might reject all strings which contain
alphabetic characters before evaluating the input string. The
resulting function may look like this:

const safeEvaluate = userInput => {
if(/[a-z]/i.test(userInput)) {
notifyUser("Invalid input: " + userInput);
return;

}
return eval(userInput);

};

Although this may seem adequate validation, surprisingly,
JavaScript (among other languages) are Turing Complete
using a non-alphabetic subset of characters. For example,
we could provide the JSFuck [19] program found in Ap-
pendix A as input to have the application share the user’s
document.cookie. It bypasses this filter, since it only uses
combinations of the 6 characters [](!+). This is possible due
to JavaScript’s exceptionally quirky type conversion system.
This function now constitutes a cross-site scripting attack.

I will mention two methods for mitigating this issue. First,
one could exclude all characters besides numeric characters
and the basic mathematical operators. This, while inelegant
and inextensible, does work. More preferably, a more sophis-
ticated algorithm should be used, such as implementing a
shunting yard algorithm, or using existing expression evalu-
ation software that better fits the application design [14, 24].

Nonetheless, the existence of eval in JavaScript and sim-
ilar languages makes it an appealing tool to handle user
expressions, especially for those less familiar with existing
libraries for the subject and with the potential pitfalls of eval-
uating user input. In this case, there is probably not much
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that can be done on the language design front without being
annoying in, say, emitting a warning the first/every time
eval is invoked.

3.4 Discussion
These language-specific surveys demonstrate a few core con-
cepts language designers should keep in mind. I will sum-
marize my findings in the form of a list of maxims for the
language designer, as well as developers wishing to be mind-
ful of and have language to assess potential programming
languages.

Security-convenience alignment.As best demonstrated
by the deprecation of C gets and Python 2’s input, when
there is dissonance between convenience and security, pro-
grammers are more likely to introduce security vulnerability
to their programs if they are not especially mindful. These
vulnerabilities can be easily designed if the avenues for vul-
nerability are removed or fixed.

Security consciousness. As seen with the plethora of un-
safe behavior still able to be invoked in C/C++ and JavaScript,
when choosing or designing a programming language, one
should prefer languages with fewer common vulnerable PLF,
and more safe ones. If one does not need to use a language
with more vulnerable PLFs, one should prefer other, safer
languages over it, so as to minimize potential security vul-
nerabilities in advance of code writing.

Programmer-first safety. Even the most careful of pro-
grammers, as humans, are error prone. Giving programmers
unilateral ability to succinctly make dangerous mistakes
gives them the ability to unwittingly make those mistakes, as
seen with the format string attack vulnerability in C. There-
fore, for the programmer’s benefit, including runtime checks
and descriptive error messages can reduce risk of doing some-
thing disastrous unintentionally, thereby reducing the risk
of security vulnerabilities.
Applying these three maxims can overlap and have in-

terplay. For example, by adhering to Security-convenience
alignment and making insecure behavior less convenient
to achieve, one upholds both Security consciousness and
Programmer-first safety. This upholds Security conscious-
ness in that vulnerable PLFs are less accessible and con-
sequently less likely to appear in normal code. It upholds
Programmer-first safety in that the programmer has a smaller
chance at making a mistake in using a vulnerable PLF.

4 Feature Survey
This paper now turns to a survey of some broad, general
features and concepts present in a variety of languages.

4.1 Regular Expressions and Denial of Service
Regular expressions (regex) are a helpful feature found in al-
most any modern language which are used to validate input,
perform text substitutions, and a variety of other tasks. They

are succinct and easy ways to accomplish their tasks, and
save manually writing tens to hundreds of lines of mundane
parser code.

To support backreferencing, regex engines often transform
regex into corresponding non-deterministic finite automata
(NFA) [12]. Due to the nature of NFAs, interpreting certain
NFAs can involve backtracking, which, in the worst-case
scenario, can be very expensive, often with polynomial or
exponential complexity [12]. This means that regexes of a
particular form can cause regex engines to consume process-
ing resources for a prolonged period, potentially constituting
a denial of service (or DoS) attack. Davis et al. [12] identify
this as particular problematic in Node.js, a popular server
framework, where a single problematic regex can hang the
entire server. A class of such regexes are termed super-linear
(SL) regexes.

Programming languages using regex engines sometimes
unconditionally use NFAs, even where conventional algo-
rithms not bounded above by polynomial complexity could
suffice [28]. Practically, swapping between these algorithms
is harder than it would seem, and some engines opt to simply
optimize NFA traversal by avoiding backtracking altogether
when possible [11] or avoiding redundant state traversal
[12].
These approaches are unsuccessful in entirely disarming

the threat posed by SL regexes; regexes liable to search space
explosion are commonplace and natural, especially in third-
party software [12]. While innovations in regex engines con-
tinue to reduce the effect of ReDoS attacks, the attackmethod
continues to pose a considerable threat [13]. The best miti-
gation remains to be revising affected regular expressions to
avoid the use of SL regexes.

4.2 External Library Dependencies and Trust
Often considered one of the hallmarks of modern program-
ming languages, external library integration is a powerful
tool for any developer attempting to share their own code or
reuse the code of others. The Node.js JavaScript implemen-
tation has npm [1], Python versions have pip [8], Ruby has
RubyGems [2], etc.

While programmers often take these libraries for granted,
tracing dependency chains reveals a complicated interper-
sonal lattice. A programmer may easily run npm i node-ipc
on their command line, import that library in their program
with, say, import ipc from ’node-ipc’;, and use it with-
out a second thought. Indeed, there is an expectation that
popular open-source third-party libraries function correctly
and safety. That is to say: We place an awful lot of trust in
third parties.
The recently-coined concept of “protestware“ classifies

software which has the affect of distributing social, political,
or personal stances through mutating code behavior [20].
Kula and Treude [20] describe both malignant and benign
protestware. Malignant protestware is pertinent to the topic
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at hand, and gestures to the broader issue with the amount of
trust we place in library developers, who are easy to forget
as being mere humans, often working alone or with small
teams, yet depended upon by many.

The hallmark example of malign protestware is node-ipc
[7], which was modified in response to the Russia-Ukraine
conflict to overwrite the files of Russian and Belarusian users
of software which imported node-ipc with a single heart
emoji [5]. While those of us who disagree with Russia in
their invasion of Ukraine may not be able to immediately
recognize the dangers posed by actions patterned after this
kind of protestware, we should recognize that developer’s
intentions may not always be so noble as protesting social
injustice. Indeed, a developer can inject malign protestware,
or even actual malware, into a library they maintain for a
wide swath of reasons; or, through standard phishing tactics,
the credentials of a developer may be compromised, and any
library they maintain may have malware injected into it.

4.3 Discussion
Generally, many software vulnerabilities can arise due to
misplaced trust, either in general language features, or in
third-party libraries.

What mitigations can be enacted to combat vulnerabilities
in third-party, whether ReDoS or library poisoning? The
most immediate mitigations for software development are to
integrate code review of third-party sources into the develop-
ment life cycle, as well as fixing your software requirements
to not automatically use versions newer than those cleared
via code review [20]. Unfortunately, language design tac-
tics alone cannot address these vulnerabilities outside of
removing the affected features.

What about mitigations on the language design front? We
once again encounter the tension between convenience and
security.
In the first case of ReDoS, giving the programmer the

tool of regex leaves them vulnerable to unwittingly writing
SL regexes, a concept relatively foreign to many program-
mers. Conceivably, warnings could be issued for detected
SL regexes during run or compile time. However, static SL
detection tools are heuristics which yield false positives and
negatives [13], unsuitable for language-integrated warning
generation.

Other potential mitigations could be to run regular expres-
sion queries on a separate thread so that the main process
is not entirely stunted by an explosive regex search. How-
ever, this makes regex engine computation as a whole suffer,
especially for simpler regexes. Limiting the length of the
input, while a possible reasonably effective mitigation, is
not generally desirable, as the size limit required may be too
short to meet program requirements [12]. Further separating
regular expressions into two separate engine (one that sup-
ports backtracking and one that avoids it) puts a significant

mental burden on the programmer to analyze every regular
expression they write for use of backtracking.
In the second case of protestware and related vulnera-

bilities, having a centralized library repository and library
import syntax within a language is the ultimate convenience
which can inevitably lead to introducing vulnerabilities. Al-
though software inherits the security vulnerabilities of the
third-party software it uses, it is becoming increasingly clear
that the main issue in both of these cases lies with trust, trust
in the language features given to the programmer. In our two
cases, the issue is the trust placed in the capacities of regular
expressions, and in the third-party library dependency chain
of supply.

Library repository maintainers could maintain trust by en-
gaging in code reviews of their own. However, this solution
scales incredibly poorly when faced with the volume any
remotely popular library receives code and code updates;
the alternative of using a selective process of reviewing only
those libraries that are the most used discourages the usage
of nicher third-party software. It is unclear what can even
be done on the language front to address what is primarily
an interpersonal problem between programmers. Further
research is certainly required, as suggested by [20], as to the
best ways to implement automatic protestware detection.
This section showcases the necessity of programmer dis-

cipline and that not all security issues are rectifiable at the
level of language design. While language designers can keep
security in mind when designing a language and its features,
by virtue of wanting to give programmers powerful and con-
venient tools, it may not be possibly, at least not without
much difficulty and research, to prevent programmers from
performing insecure actions.

5 Conclusion
I have surveyed language-specific features aswell as language-
agnostic features, and how the vulnerabilities incurred through
their usage can be mitigated from the language design side.
In some cases, as with gets, vulnerabilities are entirely fix-
able on the language designer’s part, although in practice
this may conflict with other language design goals, such as
backwards compatibility. In yet other cases, other language
design goals end up trumping security concerns, leaving
vulnerable PLFs in languages. Last, in many cases, some
vulnerabilities that initially arise due to a programming lan-
guage feature seem to be irreparable on the language design
front without entirely removing what makes those features
useful, as seen with the existence of ReDoS attacks and the
corresponding limited mitigations outside of programmer
discipline and awareness.

I also introduced three language design maxims: Security-
convenience alignment, the concept of making security and
convenience align as much as possible in PLFs, Security con-
sciousness, the concept of avoiding vulnerable PLFs either
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in design or in language choice, and Programmer-first safety,
the concept of not letting programmers commit disastrous
mistakes without warning them, or forcing them to take a
more intentional route.

A JSFuck program for document.cookie
Generated by using the program at [19]. This is a valid
JavaScript program that, when executed, returns the value
stored in the user’s page’s document.cookie.
[][(![]+[])[+[]]+(![]+[])[!+[]+!+[]]+(![]+[])[+!+[]]+(!![]+[
])[+[]]][([][(![]+[])[+[]]+(![]+[])[!+[]+!+[]]+(![]+[])[+!+[
]]+(!![]+[])[+[]]]+[])[!+[]+!+[]+!+[]]+(!![]+[][(![]+[])[+[]
]+(![]+[])[!+[]+!+[]]+(![]+[])[+!+[]]+(!![]+[])[+[]]])[+!+[]
+[+[]]]+([][[]]+[])[+!+[]]+(![]+[])[!+[]+!+[]+!+[]]+(!![]+[]
)[+[]]+(!![]+[])[+!+[]]+([][[]]+[])[+[]]+([][(![]+[])[+[]]+(
![]+[])[!+[]+!+[]]+(![]+[])[+!+[]]+(!![]+[])[+[]]]+[])[!+[]+
!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[][(![]+[])[+[]]+(![]+[])[!+
[]+!+[]]+(![]+[])[+!+[]]+(!![]+[])[+[]]])[+!+[]+[+[]]]+(!![]
+[])[+!+[]]]((!![]+[])[+!+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![
]+[])[+[]]+([][[]]+[])[+[]]+(!![]+[])[+!+[]]+([][[]]+[])[+!+
[]]+(+[![]]+[][(![]+[])[+[]]+(![]+[])[!+[]+!+[]]+(![]+[])[+!
+[]]+(!![]+[])[+[]]])[+!+[]+[+!+[]]]+(!![]+[])[!+[]+!+[]+!+[
]]+(+(!+[]+!+[]+!+[]+[+!+[]]))[(!![]+[])[+[]]+(!![]+[][(![]+
[])[+[]]+(![]+[])[!+[]+!+[]]+(![]+[])[+!+[]]+(!![]+[])[+[]]]
)[+!+[]+[+[]]]+([]+[])[([][(![]+[])[+[]]+(![]+[])[!+[]+!+[]]
+(![]+[])[+!+[]]+(!![]+[])[+[]]]+[])[!+[]+!+[]+!+[]]+(!![]+[
][(![]+[])[+[]]+(![]+[])[!+[]+!+[]]+(![]+[])[+!+[]]+(!![]+[]
)[+[]]])[+!+[]+[+[]]]+([][[]]+[])[+!+[]]+(![]+[])[!+[]+!+[]+
!+[]]+(!![]+[])[+[]]+(!![]+[])[+!+[]]+([][[]]+[])[+[]]+([][(
![]+[])[+[]]+(![]+[])[!+[]+!+[]]+(![]+[])[+!+[]]+(!![]+[])[+
[]]]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[][(![]+[])[+[
]]+(![]+[])[!+[]+!+[]]+(![]+[])[+!+[]]+(!![]+[])[+[]]])[+!+[
]+[+[]]]+(!![]+[])[+!+[]]][([][[]]+[])[+!+[]]+(![]+[])[+!+[]
]+((+[])[([][(![]+[])[+[]]+(![]+[])[!+[]+!+[]]+(![]+[])[+!+[
]]+(!![]+[])[+[]]]+[])[!+[]+!+[]+!+[]]+(!![]+[][(![]+[])[+[]
]+(![]+[])[!+[]+!+[]]+(![]+[])[+!+[]]+(!![]+[])[+[]]])[+!+[]
+[+[]]]+([][[]]+[])[+!+[]]+(![]+[])[!+[]+!+[]+!+[]]+(!![]+[]
)[+[]]+(!![]+[])[+!+[]]+([][[]]+[])[+[]]+([][(![]+[])[+[]]+(
![]+[])[!+[]+!+[]]+(![]+[])[+!+[]]+(!![]+[])[+[]]]+[])[!+[]+
!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[][(![]+[])[+[]]+(![]+[])[!+
[]+!+[]]+(![]+[])[+!+[]]+(!![]+[])[+[]]])[+!+[]+[+[]]]+(!![]
+[])[+!+[]]]+[])[+!+[]+[+!+[]]]+(!![]+[])[!+[]+!+[]+!+[]]]](
!+[]+!+[]+!+[]+[!+[]+!+[]])+(![]+[])[+!+[]]+(![]+[])[!+[]+!+
[]])()(([][[]]+[])[!+[]+!+[]]+(!![]+[][(![]+[])[+[]]+(![]+[]
)[!+[]+!+[]]+(![]+[])[+!+[]]+(!![]+[])[+[]]])[+!+[]+[+[]]]+(
[][(![]+[])[+[]]+(![]+[])[!+[]+!+[]]+(![]+[])[+!+[]]+(!![]+[
])[+[]]]+[])[!+[]+!+[]+!+[]]+([][[]]+[])[+[]]+((+[])[([][(![
]+[])[+[]]+(![]+[])[!+[]+!+[]]+(![]+[])[+!+[]]+(!![]+[])[+[]
]]+[])[!+[]+!+[]+!+[]]+(!![]+[][(![]+[])[+[]]+(![]+[])[!+[]+
!+[]]+(![]+[])[+!+[]]+(!![]+[])[+[]]])[+!+[]+[+[]]]+([][[]]+
[])[+!+[]]+(![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])
[+!+[]]+([][[]]+[])[+[]]+([][(![]+[])[+[]]+(![]+[])[!+[]+!+[
]]+(![]+[])[+!+[]]+(!![]+[])[+[]]]+[])[!+[]+!+[]+!+[]]+(!![]
+[])[+[]]+(!![]+[][(![]+[])[+[]]+(![]+[])[!+[]+!+[]]+(![]+[]
)[+!+[]]+(!![]+[])[+[]]])[+!+[]+[+[]]]+(!![]+[])[+!+[]]]+[])
[+!+[]+[+!+[]]]+(!![]+[])[!+[]+!+[]+!+[]]+([][[]]+[])[+!+[]]
+(!![]+[])[+[]]+(+(+!+[]+[+!+[]]+(!![]+[])[!+[]+!+[]+!+[]]+[
!+[]+!+[]]+[+[]])+[])[+!+[]]+([][(![]+[])[+[]]+(![]+[])[!+[]
+!+[]]+(![]+[])[+!+[]]+(!![]+[])[+[]]]+[])[!+[]+!+[]+!+[]]+(
!![]+[][(![]+[])[+[]]+(![]+[])[!+[]+!+[]]+(![]+[])[+!+[]]+(!
![]+[])[+[]]])[+!+[]+[+[]]]+(!![]+[][(![]+[])[+[]]+(![]+[])[
!+[]+!+[]]+(![]+[])[+!+[]]+(!![]+[])[+[]]])[+!+[]+[+[]]]+(+(
!+[]+!+[]+[+[]]))[(!![]+[])[+[]]+(!![]+[][(![]+[])[+[]]+(![]

+[])[!+[]+!+[]]+(![]+[])[+!+[]]+(!![]+[])[+[]]])[+!+[]+[+[]]
]+([]+[])[([][(![]+[])[+[]]+(![]+[])[!+[]+!+[]]+(![]+[])[+!+
[]]+(!![]+[])[+[]]]+[])[!+[]+!+[]+!+[]]+(!![]+[][(![]+[])[+[
]]+(![]+[])[!+[]+!+[]]+(![]+[])[+!+[]]+(!![]+[])[+[]]])[+!+[
]+[+[]]]+([][[]]+[])[+!+[]]+(![]+[])[!+[]+!+[]+!+[]]+(!![]+[
])[+[]]+(!![]+[])[+!+[]]+([][[]]+[])[+[]]+([][(![]+[])[+[]]+
(![]+[])[!+[]+!+[]]+(![]+[])[+!+[]]+(!![]+[])[+[]]]+[])[!+[]
+!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[][(![]+[])[+[]]+(![]+[])[!
+[]+!+[]]+(![]+[])[+!+[]]+(!![]+[])[+[]]])[+!+[]+[+[]]]+(!![
]+[])[+!+[]]][([][[]]+[])[+!+[]]+(![]+[])[+!+[]]+((+[])[([][
(![]+[])[+[]]+(![]+[])[!+[]+!+[]]+(![]+[])[+!+[]]+(!![]+[])[
+[]]]+[])[!+[]+!+[]+!+[]]+(!![]+[][(![]+[])[+[]]+(![]+[])[!+
[]+!+[]]+(![]+[])[+!+[]]+(!![]+[])[+[]]])[+!+[]+[+[]]]+([][[
]]+[])[+!+[]]+(![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+[]]+(!![]+
[])[+!+[]]+([][[]]+[])[+[]]+([][(![]+[])[+[]]+(![]+[])[!+[]+
!+[]]+(![]+[])[+!+[]]+(!![]+[])[+[]]]+[])[!+[]+!+[]+!+[]]+(!
![]+[])[+[]]+(!![]+[][(![]+[])[+[]]+(![]+[])[!+[]+!+[]]+(![]
+[])[+!+[]]+(!![]+[])[+[]]])[+!+[]+[+[]]]+(!![]+[])[+!+[]]]+
[])[+!+[]+[+!+[]]]+(!![]+[])[!+[]+!+[]+!+[]]]](!+[]+!+[]+[+!
+[]])+([![]]+[][[]])[+!+[]+[+[]]]+(!![]+[])[!+[]+!+[]+!+[]])
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